3. 쓰레드 동기화 함수
쓰레드 동기화와 관련된 함수들이다.
3.1. pthread_mutex_init
int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutex_attr *attr); |
pthread_mutex_init 는 mutex 객체를 초기화 시키기 위해서 사용한다. 첫번째 인자로 주어지는 mutex 객체 mutex를 초기화시키며, 두번째 인자인 attr 를 이용해서 mutex 특성을 변경할수 있다. 기본 mutex 특성을 이용하기 원한다면 NULL 을 사용하면 된다.
mutex 특성(종류) 에는 "fast", "recurisev", "error checking" 의 종류가 있으며, 기본으로 "fast" 가 사용된다.
// 뮤텍스 객체 선언 pthread_mutex_t mutex_lock; ... void *t_function() { pthread_mutex_lock(&mutex_lock); // critical section pthread_mutex_unlock(&mutex_lock); } int main() { pthread_t p_thread; int state; // 뮤텍스 객체 초기화, 기본 특성으로 초기화 했음 pthread_mutex_init(&mutex_lock, NULL); pthread_create(&p_thread, NULL, t_function, (void *)&a); ... pthread_joinc(&p_thread, (void **)&status); } |
3.2. pthread_mutex_destory
int pthread_mutex_destory(pthread_mutex_t *mutex); |
pthread_mutex_destory 를 이용해서 제대로 mutex 를 삭제하려면 이 mutex 는 반드시 unlock 상태이여야 한다.
3.3. pthread_mutex_lock
int pthread_mutex_lock(pthread_mutex_t *mutex); |
만약 다른 어떤 쓰레드에서도 mutex lock 을 사용하고 있지 않다면, 즉시 mutex lock 을 얻을수 있게 되고 critcal section 에 진입하게 된다. critcal section 에서의 모든 작업을 마쳐서 사용하고 있는 mutex lock 이 더이상 필요 없다면 pthread_mutex_unlock 를 호출해서 mtuex lock 를 되돌려준다.
3.4. pthread_mutex_unlock
int pthread_mutex_unlock(pthread_mutex_t *mutex); |
3.5. pthread_cond_init
int pthread_cond_init(pthread_cond_t *cond, const pthread_cond_attr *attr); |
조건변수 cond는 상수 PTHREAD_COND_INITIALIZER 을 이용해서도 초기화 할수 있다. 즉 다음과 같은 2가지 초기화 방법이 존재한다.
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; or pthread_cond_init(&cond, NULL); |
3.6. pthread_cond_signal
int pthread_cond_signal(pthread_cond_t *cond); |
3.7. pthread_cond_boradcast
int pthread_cond_broadcast(pthread_cond_t *cond); |
3.8. pthread_cond_wait
int pthread_cond_wait(pthread_cond_t cond, pthread_mutex_t *mutex); |
3.9. pthread_cond_timewait
int pthread_cond_timedwait(pthread_cont_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime); |
또한 pthread_cond_timedwait함수는 다른 signal 에 의해서 interrupted 될수 있으며 이때 EINTR 을 리턴한다. 이 함수를 쓸때는 interrupted 상황에 대한 처리를 해주어야 한다.
3.10. pthread_cond_destroy
int pthread_cond_destroy(pthread_cond_t *cond); |
3.11. 예제코드
이번장에서 설명한 쓰레드 동기화 관련 함수의 이해를 돕기 위해서 간단한 예제를 준비했다. 설명은 주석으로 대신한다.
예제 : pthrad_sync_api.c
#include <pthread.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <vector> #include <iostream> using namespace std; void *ping(void *); void *pong(void *); pthread_mutex_t sync_mutex; pthread_cond_t sync_cond; pthread_mutex_t gmutex = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t gcond = PTHREAD_COND_INITIALIZER; int main() { vector<void *(*)(void *)> thread_list; vector<pthread_t> tident(10); int thresult; int status; int i; pthread_mutex_init(&sync_mutex, NULL); pthread_cond_init(&sync_cond, NULL); thread_list.push_back(pong); thread_list.push_back(ping); for(i = 0; i < thread_list.size(); i++ ) { pthread_mutex_lock(&sync_mutex); if (pthread_create(&tident[i], NULL, thread_list[i], (void *)NULL) <0) { perror("error:"); exit(0); } pthread_cond_wait(&sync_cond, &sync_mutex); pthread_mutex_unlock(&sync_mutex); } for (i = 0; i < tident.size(); i++) { pthread_join(tident[i], (void **)&status); } } void *ping(void *data) { int i=0; pthread_mutex_lock(&sync_mutex); pthread_cond_signal(&sync_cond); pthread_mutex_unlock(&sync_mutex); while(1) { pthread_mutex_lock(&gmutex); printf("%d : ping\n", i); pthread_cond_signal(&gcond); pthread_cond_wait(&gcond, &gmutex); pthread_mutex_unlock(&gmutex); usleep(random()%100); i++; } } void *pong(void *data) { int i = 0; pthread_mutex_lock(&sync_mutex); sleep(1); pthread_cond_signal(&sync_cond); pthread_mutex_unlock(&sync_mutex); while(1) { pthread_mutex_lock(&gmutex); pthread_cond_wait(&gcond, &gmutex); printf("%d : pong\n", i); pthread_cond_signal(&gcond); pthread_mutex_unlock(&gmutex); i++; } } |
위의 예제는 ping&pong 프로그램으로 ping 쓰레드와 pong 쓰레드가 각각 번갈아가면서 "ping", "pong" 을 날리는 프로그램이다. 2개의 영역에 걸쳐서 크리티컬섹션이 지정되어 있으며 각 크리티컬섹션안에는 쓰레드 동기화를 위해서 ptread_cond_signal 이 쓰여지고 있다.
위의 코드는 기본적으로 pong 쓰레드가 먼저 시그널을 대기하고 있다가 그 후 ping 쓰레드가 진입해서 "ping"을 날리고 시그널을 발생시키면 "pong" 메시지를 발생시키도록 되어 있다. 그렇다면 while 문에 있는 크리티컬 섹션에 반드시 pong 쓰레드가 먼저 진입할수 있도록 만들어줘야 할것이다. 그래서 위의 코드에서는 pong 쓰레드를 먼저 생성시켰다. 그러나 이것만으로는 충분하지 않다. 예를들어서 pong 쓰레드에서 크리티컬섹션에 들어가기 위해서 어떤 부가적인 작업이 있다고 했을때(메모리초기화, 기타 다른 함수 호출과 같은, 위에서는 sleep 으로 대신했다), 우리가 의도했던 바와는 다르게 ping 가 먼저 크리티컬섹션에 진입할수도 있다. 이럴경우 2개의 쓰레드는 교착상태에 빠지게 된다.
ping 쓰레드가 크리티컬섹션에 먼저 진입했을경우 ping 쓰레드는 "ping" 출력시키고 시그널을 발생시킬 것이고 pong 쓰레드가 "pong"를 출력시키고 시그널을 발생시킬때까지 시그널대기 하게 된다. ping 쓰레드가 시그널대기 하게 되면, 크리티컬섹션에 대한 뮤텍스 잠금이 해제됨으로 뒤늦게 크리티컬섹셔네 진입을 시도하던 pong 가 크리티컬섹션에 진입하고 ping 쓰레드에서부터 신호가 있는지 기다리게 될것이다. 그러나 ping 쓰레드는 이미 신호를 날려버렸음으로, pong 쓰레드는 결코 도착하지 않을 신호를 기다리며 영원히 시그널대기 하게 될것이다. 이런식으로 2개의 쓰레드는 교착상태에 빠져 버린다.
이 문제는 쓰레드간 동기화를 이용해서 해결할수 있으며, 위 코드에서는 mutex 잠금과, 조건변수를 이용해서 해결하고 있다. 물론 쓰레드간 동기화를 위해서 사용할수 있는 원시?적인 방법으로 sleep 나 usleep 같은 함수를 호출하는 방법도 있긴 하지만, ping 쓰레드에서 크리티컬 섹션에 진입하기전 1초 정도 sleep 을 주는 식으로 사용가능하지만 추천할만하진 않다. (간혹 간단하게 사용할수는 으며, 가장 확실한 방법을 제공해 주기도 한다)
출처 : http://www.joinc.co.kr/modules/moniwiki/wiki.php/article/Pthread_API_Reference
'프로그래밍' 카테고리의 다른 글
bind error 방지 (0) | 2010.07.17 |
---|---|
리눅스에서 fflush() 안 될때 해결책 (0) | 2009.04.23 |
기본 Thread 함수 (0) | 2008.04.28 |
fork와 thread의 차이점 (0) | 2008.04.28 |
간단한 thread 함수 예제 (0) | 2008.04.28 |